Near-Best Univariate Spline Discrete Quasi-Interpolants on Nonuniform Partitions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3 M ay 2 00 4 Near - best univariate spline discrete quasi - interpolants on non - uniform partitions

Univariate spline discrete quasi-interpolants (abbr. dQIs) are approximation operators using B-spline expansions with coefficients which are linear combinations of discrete values of the function to be approximated. When working with nonuniform partitions, the main challenge is to find dQIs which have both good approximation orders and bounded uniform norms independent of the given partition. N...

متن کامل

Near minimally normed spline quasi-interpolants on uniform partitions

Spline quasi-interpolants are local approximating operators for functions or discrete data. We consider the construction of discrete and integral spline quasi-interpolants on uniform partitions of the real line having small infinite norms. We call them near minimally normed quasi-interpolants: they are exact on polynomial spaces and minimize a simple upper bound of their infinite norms. We give...

متن کامل

Quadratic spline quasi-interpolants on Powell-Sabin partitions

In this paper we address the problem of constructing quasi-interpolants in the space of quadratic Powell-Sabin splines on nonuniform triangulations. Quasi-interpolants of optimal approximation order are proposed and numerical tests are presented.

متن کامل

Univariate Spline Quasi - Interpolants and Applications to Numerical Analysis

We describe some new univariate spline quasi-interpolants on uniform partitions of bounded intervals. Then we give some applications to numerical analysis: integration, differentiation and approximation of zeros.

متن کامل

Quadratic Spline Quasi - Interpolants on Bounded Domains

We study some C1 quadratic spline quasi-interpolants on bounded domains  ⊂ Rd, d = 1, 2, 3. These operators are of the form Q f (x) = ∑ k∈K () μk( f )Bk(x), where K () is the set of indices of B-splines Bk whose support is included in the domain  and μk( f ) is a discrete linear functional based on values of f in a neighbourhood of xk ∈ supp(Bk). The data points x j are vertices of a unifor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Constructive Approximation

سال: 2008

ISSN: 0176-4276,1432-0940

DOI: 10.1007/s00365-007-9002-y